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Problem description

Vehicle ferries transport private and commercial vehicles alike

The variety of vehicle sizes makes the consideration of 2-d packing an attractive
proposition

The set of vehicles to be loaded is known but their arrival times at the terminal
are not

The vehicle ferry loading problem is constrained by:

— Queues at the ferry terminal mean that only vehicles at the front of queues
can be loaded next

— Roll-on-roll-off ferry means orientations are fixed and parking positions
must be reachable from the entrance
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The queue orders are dependent upon random
arrival times and a lane allocation policy
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Problem formulation

e Objective:

— Find a ferry terminal lane allocation policy (yard policy) such that the average
space utilisation is maximised under arrival time uncertainty.

— Alternatively, maximise (ticket revenue/claimed utilisation (first stage)-
(refund+compensation for unpacked vehicles (recourse actions)) under
arrival uncertainty)

e Constraints:
— In every arrival scenario

e Queue orders are respected

e Loading order respects queue orders
e Recourse problem: Solve the packing problem for a given set of queues 2
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Sequential guillotine-cut-knapsack packing approach

» Packing solutions are encoded as genes which consist of strings of integers
« Each integer defines a guillotine cut orientation and the target dimensions of vehicles loaded from the

fronts of queues (a look-up table of orientations and quantiles for target dimensions is used)
» Vertical cuts from the left or right of the remaining space and horizontal cuts of the bottom edge of the
remaining space ensure that the entrance is always connected to the remaining space

Problem aspect Solution approach aspect

Implementability Packing solutions consist of a sequence of rows and columns of
specified vehicles to load onto the ferry

Online/sequential implementability The entrance edge is never cut off with a guillotine cut

2-d packing solutions Optimising the sequence of rows and columns provides the benefits of
a 2-d packing solution (current practice is based on columns only)
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Yard policy solution encoding

'
" [Quantiles Yard policy

Strip type small middle large . .
Width 0 1 2 » Each lane is devoted to vehicles of a target
Length 3 4 ° width or a target length

* On arrival vehicles are allocated to the closest
matching lane
* Ties can be broken based on:
» (ueue length
« number of different vehicle types in
gueues

Example solution={2,5,3}

Terminal
-- - - - - 2=Vehicles with a large width

el 0 5=Vehicles with a large length
[ [ [ [ [ [ [ [ [ - 3=Vehicles with a small length
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Packing solution encoding

. lQuanties |

Strip type small middle I - 3 cut orientations
Bottom row 0 3 6 . .
Leftcolumn 1 4 7 » 3 rectangle size quantiles
Right column 2 5 8

@=hgticainkaovw aaepitibdn Etiasa biktsd o S

Example solution={3,2,7,0,6}

Terminal :
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Iterative solution approach

Since the yard policy and packing solutions are each encoded as strings the same
algorithms can be used to solve each problem

We propose an iterative approach of alternating between packing and yard policy
optimisation

Pseudocode on following slide
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Iterative genetic algorithms for lane policy and packing optimisation

Algorithm 1 Iterative genetic algorithm for lane policy and packing optimisation under arrival time uncertainty

bl

10:
11
12:
13:
14:
15:
16:
17:
18:
19:
20:

e = A e

Generate m random arrival scenarios
Generate and evaluate a dual population of solutions (P)
(Fy; denotes the packing solution for population member 7)
(Py; denotes the yard policy solution for population member 1)
Store the best solution (best _sol)
Initialise iteration type k = 1
iteration =0
while ireration < iteration_limit do
k = 1 —k (alternative iteration type. Lane policy/packing)
Set each element of P equal to besr_sol
Randomise a portion ¢ of the k type population
generation = ()
while generation < generation_limit; do
Evaluate population in terms of the average utilisation over m arrival scenarios
update best _sol
Tournament selection and crossover on B,
Mutation applied to P (k type strings) with rate ry
generation = generation + |
end while
iteration = iteration + 1

21: end while

10
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Simulated annealing algorithm

The iterative procedure can be used to find and optimised solution for a single
arrival scenario

The lane policy and packing solutions enable escape from local optima
We designed problem specific neighbourhoods for this problem

An alternative approach to the general problem is to solve the packing problem
to optimality then reverse engineer the lane policy that maximises the feasibility
of this packing solution

11
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Packing solution feasibility under arrival time uncertainty

10 6791 1552 231 6791 6791 6 4850 1067
L W L L L L
2 6

8 9

[k
2z

Inputs

objective_value=4018.8794891794364

n; ; = the number of vehicle type j in strip i
1 if vehicle type j occupies position k in lane [

Pliy = {0 otherwise
|N| = number of yard lanes|

N; = number of vehicles in yard lane [
V = set of vehicle types
S = number of strips in packing solution
Decision variables
_ [1 if the k" vehicle in lane [ is assigned to strip i
k4710 otherwise
b, = the strip number assigned to the vehicle in the k* position in lane 1

utilisation=0.9579542687017221
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Lower bounds for utilisation
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Experiments

e \We compare the proposed algorithm with:

— Bottom left

— A simulated annealing algorithm
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The effect of the number of lanes

e Repeat for numbers of vehicle
types other than 5

e Plus general packing

area of vehicles not packed/pixels2
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—— iterative approach (break ties by fullest lane)
iterative approach (break ties by emptiest lane)
rule based yard policy
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The effect of the number of vehicle types

e The adhoc strip generation 097
approach enables the
exploitation of compacting that
Is precluded in the standard
SGCKS approach

General packing (adhoc strip generation)
SGCKS

0.96

095
0.94 |

093

e Repeat this graph with SOCKS
initial solutions in GP

092

space utilisation rate

091

09

089 1 1 1 1 1 ]
0 5 10 15 20 25 30
number of vehicle types
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Combining guillotine cut and adhoc strip generation

objective_value=3149.8477807464124 ohjective_value=56000.605429580282 ohjective_wvalue=2491.015077602243

e 1) Generate an initial
solution using the fast
SGCKS

utilisation=0.0625114885077385 utilisation=0.9157846343820830 utilisation=0.973310431425209

e 2)solution is translated
into adhoc approach
(different gene
interpretation)

e 3) Adhoc approach finds
solution (which retains
and improves upon the
initial solution)




SA approach iterations tradeoff
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